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The use of high levels of Zinc Oxide (ZnO) in the EU before 2022 was one of the most common methods to
prevent postweaning diarrhea (PWD) in pig production. Pharmacologically high levels of ZnO (2000-3000
ppm) increase growth and reduce the incidence of enteric bacterial diseases such as post-weaning
diarrhea (PWD)( Carlson et al., 1999; Hill et al., 2000; Hill et al., 2001; Poulsen & Larsen, 1995; De Mille et
al., 2019).

However, Zn0O showed adverse effects, such as the accumulation of heavy metal in the environment, the
risk for antimicrobial resistance (AMR), and problems of mineral toxicity and adverse growth effects when
feeding it longer than 28 days (Jensen et al., 2018; Cavaco et al., 2011; Vahjen, 2015; Romeo et al., 2014;
Burrough et al., 2019). To replace ZnO in pig production, let us first look at its positive effects to know
what we must compensate for.

Zn0O has a multifactorial mode of action

ZnO shows several beneficial characteristics that positively influence gut health, the immune system,
digestion, and, therefore, also overall health and growth performance.
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Figure 1. Beneficial effects and ZnO mode of action in postweaning piglets

1. ZnO acts as an antimicrobial

Concerning the antimicrobial effects of ZnO, different possible modes of action are discussed:

= ZnO in high dosages generates reactive oxygen species (ROS) that can damage the bacterial

cell walls (Pasquet et al., 2014)
= The death of the bacterial cell due to direct contact of the metallic Zn to the cell (Shearier et al.,

2016)
= Intrinsic antimicrobial properties of the ZnO** ions after dissociation. The uptake of zinc into cells
is regulated by homeostasis. A concentration of the ZnO’* ions higher than the optimal level of

107 to 10° M (depending on the microbial strain) allows the invasion of Zn’* ions into the cell,
and the zinc starts to be cytotoxic (Sugarman, 1983; Borovansky et al., 1989).

Zn0 shows activity against, e.q., Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Streptococcus
pyogenes, and other enterobacteria (Ann et al., 2014; Vahjen et al., 2016). However, Roselli et al. (2003)
did not see a viability-decreasing effect of ZnO on ETEC.

2. ZnO modulates the immune system

Besides fighting pathogenic organisms as described in the previous chapter and supporting the immune
system, ZnO is an essential trace element and has a vital role in the immune system. ZnO improves the
innate immune response, increasing phagocytosis and oxidative bursts from macrophages and
neutrophils. It also ameliorates the adaptative immune response by increasing the number of T
lymphocytes (T cells) in general and regulatory T lymphocytes (T-regs) in particular. These cells control the
immune response and inflammation (Kloubert et al., 2018). Macrophage capacity for phagocytosis (Ercan
and Bor, 1991) and to kill parasites (Wirth et al., 1989), and also the killing activity of natural killer cells
depends on Zn (Rolles et al., 2018). By reducing bacterial adhesion and blocking bacterial invasion, ZnO
disburdens the immune system (Roselli et al., 2003).

ZnO reduces the expression of several proinflammatory cytokines induced by ETEC (Roselli et al., 2003).
Several studies have also shown a modulation effect on intestinal inflammation, decreasing levels of IFN-y,
TNF-a, IL-1R8 and IL-6, all pro-inflammatory, in piglets supplemented with ZnO (Zhu et al., 2017; Grilli et al.
2015).

3. ZnO improves digestion and promotes
growth

Besides protecting young piglets against diarrhea, the goal is to make them grow optimally. For this target,
an efficient digestion and a high absorption of nutrients is essential. Stimulating diverse pancreatic
enzymes such as amylase, carboxypeptidase A, trypsin, chymotrypsin, and lipase increases digestibility
(Hedemann et al., 2006; Pieper et al., 2015). However, Pieper et al. (2015) also showed that a long-term
supply of very high dietary zinc triggers oxidative stress in the pancreas of piglets.

By stimulating the secretion of ghrelin at the stomach level and thereby promoting the release of insulin-
like growth factor (IGF-1) and cholecystokinin (CCK), ZnO enhances muscle protein synthesis, cell
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proliferation, and feed intake (Yin et al., 2009; MacDonald et al., 2000)).

The result of improved digestion is increased body weight and average daily gain, which can be seen, e.qg.,
in a study by Zhu et al. (2017).

4. ZnO protects the intestinal morphology

ZnO prevents the decrease of the trans-endothelial electrical resistance (TEER), usually occurring in the
case of inflammation, by downregulating TNF-a and IFN-y. TNF-a, as well as IFN-y, increase the
permeability of the epithelial tight junctions and, therefore, the intestinal barrier (Al-Sadi et al., 2009).

The enterotrophic and anti-apoptotic effect of ZnO is reflected by a higher number of proliferating and
PCNA-positive cells and an increased mucosa surface in the ileum (higher villi, higher villi/crypt ratio)(Grilli
et al., 2015). Zhu et al. (2017) also saw an increase in villus height in the duodenum and ileum and a
decrease in crypt depth in the duodenum due to the application of 3000 mg of ZnO/kg. Additionally, they
could notice a significant (P<0.05) upregulation of the mRNA expression of the zonula occludens-1 and
occluding in the mucosa of the jejunum of weaned piglets.

In a trial conducted by Roselli et al. (2003), the supplementation of 0.2 mmol/L ZnO prevented the
disruption of the membrane integrity when human Caco-2 enterocytes were challenged with ETEC.

5. ZnO acts antioxidant

The antioxidant effect of ZnO was shown in a study conducted by Zhu et al., 2017. They could
demonstrate that the concentration of malondialdehyde (MDA), a marker for lipid peroxidation, decreased
on day 14 or 28, and the total concentration of superoxide dismutase (SOD), comprising enzymes that
transform harmful superoxide anions into hydrogen peroxide, increased on day 14 (P<0.05). Additionally,
Zn is an essential ion for the catalytic action of these enzymes.

Which positive effects of ZnO can be
covered by organic acids (OAs)?

1. OAs act antimicrobial

OAs, on the one hand, lower the pH in the gastrointestinal tract. Some pathogenic bacteria are susceptible
to low pH. At a pH<5, the proliferation of, e.g., Salmonella, E. coli, and Clostridium is minimized. The good
thing is that some beneficial bacteria, such as lactobacilli or bifidobacteria, survive as they are acid-
tolerant. The lactobacilli, on their side, can produce hydrogen peroxide, which inhibits, e.g.,
Staphylococcus aureus or Pseudomonas spp. (Juven and Pierson, 1996).

Besides this more indirect mode of action, a more direct one is also possible: Owing to their lipophilic
character, the undissociated form of OAs can pass the bacterial membrane (Partanen and Mroz, 1999). The
lower the external pH, the more undissociated acid is available for invading the microbial cells. Inside the
cell, the pH is higher than outside, and the OA dissociates. The release of hydrogen ions leads to a
decrease in the internal pH of the cell and to a depressed cell metabolism. To get back to “normal
conditions”, the cell expels protons. However, this is an energy-consuming process; longer exposure to
OAs leads to cell death. The anion remaining in the cell, when removing the protons, disturbs the cell’s
metabolic processes and participates in killing the bacterium.

These theoretical effects could be shown in a practical trial by Ahmed et al. (2014). He fed citric acid (0.5
%) and a blend of acidifiers composed of formic, propionic, lactic, and phosphoric acid + SiO, (0.4 %) and

saw a reduction in fecal counts of Salmonella and E. coli for both groups.
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2. OAs modulate the immune system

The immune system is essential in the pig’s life, especially around weaning. Organic acids have been
shown to support or stimulate the immune system. Citric acid (0.5%), as well as the blend of acidifiers
mentioned before (Ahmed et al., 2014), significantly increased the level of serum IgG. 1gG is part of the
humoral immune system. They mark foreign substances to be eliminated by other defense systems.

Ren et al. (2019) could demonstrate a decrease in plasma tumor necrosis factor-a that regulates the
activity of diverse immune cells. He also found lower interferon-y and interleukin (l1)-18 values in the OA
group than in the control group after the challenge with ETEC. This trial shows that inflammatory response
can be mitigated through the addition of organic acids.

3. OAs improve digestion and promote growth

In piglets, the acidity in the stomach is responsible for the activation and stimulation of certain enzymes.
Additionally, it keeps the feed in the stomach for a longer time. Both effects lead to better digestion of the
feed.

In the stomach, the conversion of pepsinogen to pepsin, which is responsible for protein digestion, is
catalyzed under acid conditions (Sanny et al., 1975)group. Pepsin works optimally at two pH levels: pH 2
and pH 3.5 (Taylor, 1959). With increasing pH, the activity decreases; at pH 6, it stops. Therefore, a high
pH can lead to poor digestion and undigested protein arriving in the intestine.

These final products of pepsin protein digestion are needed in the lower parts of the GIT to stimulate the
secretion of pancreatic proteolytic enzymes. If they do not arrive, the enzymes are not activated, and the
inadequate protein digestion continues. Additionally, gastric acid is the primary stimulant for bicarbonate
secretion in the pancreas, neutralizing gastric acid and providing an optimal pH environment for the
digestive enzymes working in the duodenum.

As already mentioned, the pH in the stomach influences the transport of digesta. The amount of digesta
being transferred from the stomach to the small intestine is related to the acidity of the chyme leaving the
stomach and arriving in the small intestine. Emptying of the stomach can only take place when the
duodenal chyme can be neutralized by pancreatic or other secretions (Pohl et al., 2008); so, acid-sensitive
receptors provide feedback regulation and a higher pH in the stomach leads to a faster transport of the
digesta and a worse feed digestion.

4. OAs protect the intestinal morphology

Maintaining an intact gut mucosa with a high surface area is crucial for optimal nutrient absorption.
Research suggests organic acids play a significant role in improving mucosal health:

Butyric acid promotes epithelial cell proliferation, as demonstrated in an in vitro pig hindgut mucosa study
(Sakata et al., 1995). Fumaric acid, serving as an energy source, may locally enhance small intestinal
mucosal growth, aiding in post-weaning epithelial cells’ recovery and increasing absorptive surface and
digestive capacity (Blank et al., 1999). Sodium butyrate supplementation at low doses influences gastric
morphology and function, thickening the stomach mucosa and enhancing mucosal maturation and
differentiation (Mazzoni et al., 2008).

Studies show that organic acids affect gut morphology, with a mixture of short-chain and mid-chain fatty
acids leading to longer villi (Ferrara et al., 2016) and Na-butyrate supplementation increasing crypt depth
and villi length in the distal jejunum and ileum (Kotunia et al., 2004). However, the villi length and mucosa
thickness in the duodenum were reduced. Dietary sodium butyrate has been linked to increased microvilli
length and cecal crypt depth in pigs (Galfi and Bokori, 1990).
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5. OAs show antioxidant activity

The last characteristic, the antioxidant effect, cannot be provided at the same level as with ZnO; however,
Zhang et al. (2019) attest to OAs a certain antioxidant activity. Oxalic, citric, acetic, malic, and succinic
acids, which were extracted from Camellia oleifera, also showed good antioxidant activity in a trial

conducted by Zhang et al. (2020).

Organic acids are an excellent tool to
compensate for the ban on ZnO

The article shows that organic acids have similar positive effects as zinc oxide. They act antimicrobial,
modulate the immune system, maintain the gut morphology, fight pathogenic microbes, and also act -
slightly - antioxidant. Additionally, they have a significant advantage: they are not harmful to the
environment. Organic acids used in the proper pH range and combination are good tools for replacing zinc
oxide.
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Meat quality Is a result of
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Nowadays, nutrition is no longer about pure nutrient intake; enjoyment is also a priority. Consumers attach
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great importance to the high quality of food and, therefore, also of meat. The genetic selection for faster
growth and feeding high-energy diets made meat production more efficient and shortened the raising
period. However, this selection may sometimes also result in challenges to meat quality, such as worse
water holding capacity, less marbling, less flavor, and reduced storage & processing properties.

The following article will provide detailed information about what meat quality is, how the gut microbiota
influences it, and how we can increase meat quality by feeding and modulating the intestinal microflora.

Which factors can contribute to meat
quality?

Meat quality is a complex term. On the one hand, meat quality covers measurable parameters such as the
content of nutrients, moisture, microbial contamination, etc. On the other hand, and to no small extent,
the consumers’ preferences are significant. Since meat today is often sold as cuts or in parts (e.g., broiler
drumsticks, breast), processing also affects the quality of meat and meat products.

Physical characteristics are objective
determinants of meat quality

Physical characteristics are parameters that can be measured. For meat, the following measurable
parameters determine meat quality:

1. Fat content and fatty acid composition influence
tenderness and taste

Some years ago, the majority of consumers asked for completely lean meat, which, fortunately, has now
changed. Fat is a flavor carrier. Especially intramuscular fat (marbling) melts during the preparation,
making the meat tender, juicy, and taste good. Fat also transports fat-soluble vitamins.

A further criterion is the composition of the fat, the fatty acids. Geese fat, e.g., is known for its high
content of oleic, linoleic, linolenic, and arachidonic acid, all of them derivates of the enzymatic
denaturation of stearic acid (Okruszek, 2012).

One exception is cholesterol. Although belonging to the lipids and improving the sensory quality of meat,
consumers prefer meat with low cholesterol content.

2. Protein and amino acid content influence the meat
value

The content and the composition of protein are important factors in meat quality. Protein is essential for
constructing and maintaining organs and muscles and for the functionality of enzymes. The human body
needs 20 different amino acids for these tasks, eleven of which it can manufacture by itself. Nine amino
acids, however, must be provided by food and are called essential amino acids. Meat is a highly valuable
protein source, rich in protein and essential amino acids. The protein quality, therefore, includes the
chemical and amino acid score, the index for essential amino acids, and the biological value.

In addition to the pure nutritional value, amino acids contribute to flavor and taste. These flavor amino
acids directly influence meat'’s freshness and flavor and include threonine, alanine, serine, lysine, proline,
hydroxyproline, glutamic acid (glutamate is important for the umami taste), aspartic acid, and arginine.
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3. Vitamins and trace elements are essential nutrients

Meat is a primary source of B vitamins (B1-B9) and, together with other animal products such as eggs and
milk, the only provider of Vitamin B12. Vitamin A is available in the innards, vitamin D in the liver and fat
fish, and vitamin K in the flesh.

The most important mineral compounds in meat are zinc, selenium, and iron. Humans can utilize the iron
from animal sources particularly well.

4. pH and speed of pH decline decide if the meat is suited
for cooking

Since broiler chicken meat nowadays is usually consumed as cut-up pieces or processed products, the
appearance at the meat counter or in the plastic box is essential for being sold. The color, seen as an
apparent measurement of the freshness and quality of the meat, is influenced by the pH. The muscle pH
post-mortem plays an essential role in meat quality. Due to the glycolytic process, the pH post-mortem is a
good indication for evaluating physiological meat quality. A rapid pH decline post-mortem to 5.8-6.0 in
most cases leads to pale, soft, and exudative (PSE) meat with reduced water retention (Dzinic et al., 2015),
whereas a high ultimate pH results in dark, firm, and dry (DFD) meat with poor storage quality (Allen et al.
1997)

5. Nobody wants meat like leather

The shear force is a measure of the tenderness of the meat. To determine the shear force, the meat
undergoes the process of cooking and chilling. Afterward, standardized meat blocks, with fibers running
along the length of the sample, are put into the Warner-Bratzler system. The blade used simulates teeth,
and the system measures the force necessary to tear the piece of meat.

6. Microbial contamination is a no-go

The microbial contamination of the meat often occurs during the slaughter process. Let's take a look at
salmonella or campylobacter in poultry. The chickens take up salmonella with contaminated feed or water.
Campylobacter is transmitted by infected wild birds, inadequately cleaned and disinfected cages, or
contaminated water. The bacteria proliferate in the intestine. At slaughter, the intestine’s microorganisms
can spread onto the meat intended for human consumption.

7. High water holding capacity is necessary to have tender
meat

The moisture content contributes to the meat’s juiciness and tenderness and improves its quality. If the
meat loses its moisture, it gets tough, and quality decreases. Additionally, drip loss reduces the nutritional
value of meat and its flavor.

8. Fat oxidation makes meat rancid, and oxidative stress
can cause myopathies in broiler breasts

Rancidity of meat occurs when the fat in the flesh gets oxidized. There are different signs of meat
rancidity: bad odor, changed color, and a sticky, slimy texture. Poultry meat is considered more
susceptible to the development of oxidative rancidity than red meat. This can be explained by its higher
content of phospholipids, PUFAs, especially in the thighs. The breast meat, however, has a relatively low
level of intramuscular fat (up to 2 %) and, additionally, myoglobin is a natural antioxidant.

But oxidative stress in broiler breasts - and this more and more happens due to a selection of always
bigger breasts - can lead to muscle myopathies such as white stripes or wooden breasts, making the meat
only usable for processed products.
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Sensory meat quality addresses the human
senses

Besides physical quality, the sensory and chemical characteristics are essential to meat’s economic
importance. All attributes of meat that stimulate the human senses (vision, smell, taste, and touch) belong
to the sensory quality. It, therefore, is more subjective and hard to determine. The most important features
for the consumer include color (attractive or unattractive), texture (tenderness, juiciness, marbling, drip
loss), and taste/ flavor (Thorslund et al., 2016).

The appearance is the first impression

Nowadays, meat is often sold as cuts lying in polystyrene or clear plastic trays, over-wrapped with
transparent plastic films, so the appearance is paramount. The meat must show an attractive color. Muscle
myopathies, such as the ones occurring in chickens, would not meet consumers’ needs.

How does the flavor of meat develop?

There is a reaction between reducing sugars and amino acids when meat is cooked (Mottram, 1998). This
Maillard reaction, along with the degradation of vitamins, lipid oxidation, and their interaction, is
responsible for the production of the volatile flavor components forming the characteristic aroma and
flavor of cooked meat (MacLeod, 1994). Werkhoff et al. (1990) consider cysteine and methionine the most
significant contributors to meat flavor development. One factor deteriorating this quality characteristic is
lipid peroxidation, which turns the taste to rancid.

Some sensory characteristics are related to physical ones

The parameters of sensory meat quality can be partly explained by measurable parameters. Water
retention, e.qg., influences the juiciness of the meat. The palatability increases with higher intramuscular fat
or marbling (Stewart et al., 2021), the initial pH and the speed of decline decide if the flesh will be pale,
soft, and exudative or normal, and lipid peroxidation is the leading cause of a decrease in meat quality
(Pereira & Abreu, 2018).

Processing quality

For the processing quality, muscle structure, chemical ingredient interactions, and muscle post-mortem
changes are decisive (Berri, 2000).

Does the microbiome influence the meat
quality?

The gastrointestinal tract of monogastric animals disposes of a microbiome of primarily bacteria, mainly
anaerobic Gram-positive ones (Richards et al., 2005). With its complex microbial community, the digestive
tract is responsible for digesting feed and absorbing nutrients, but also for eliminating pathogens and
developing immunity. Gut microbiotas play an essential role in digestion, are decisive concerning the
synthesis of fatty acids, proteins, and vitamins, and, therefore, influence meat quality (Chen, 2022).

Intestinal microbiotas vary by species/breeds and age (Ma et al., 2022; Sun et al., 2018), and so does meat
quality. For example, Duroc pigs with meat of high tenderness, good flavor, and excellent tastiness show
different microbiota than other breeds (Xiao, 2017). Zhao et al.(2022) examined high- and low-fat Jinhua
pigs, with the high-fat pigs showing more increased backfat thickness but also a higher fat content in the
longissimus dorsi. They found low-fat pigs showed a higher abundance of Prevotella and Bacteroides,
Ruminococcus sp. AF12-5, Faecalibacterium sp.OFO4-11AC und Oscillibacter sp. CAG:155, which are all
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involved in fiber fermentation and butyrate production. The high-fat animals showed a higher abundance
of Firmicutes and Tenericutes, indicating that they are responsible for higher fat production of the
organism in general but also a better fat disposition in the flesh. Lei et al. (2022) showed that abdominal
fat was positively correlated with the occurrence of Lachnochlostridium and Christensenelleceae.

The intestinal microbiota-muscle axis enables us to improve meat quality by controlling intestinal
microbiota (Lei, 2022). However, to develop strategies to enhance the quality of meat, understanding the
composition of the microbiota, the functions of the key bacteria, and the interaction between the host and
microbiota is of utmost importance (Chen et al., 2022).

Different factors influence the
microbiome

Apart from that microbiotas are different in different breeds, they are additionally influenced by diseases,
feeding (diets, medical treatments with, e.g., antibiotics), and the environment (climate, geographical
position). This could be shown by different trials. The genetic influence on microbiota was impressively
documented by Goodrich et al. (2014), who detected that the microbiomes of monozygotic twins differ less
than the ones of dizygotic twins. Lei et al. (2022) compared the microbiota of two broiler breeds (Arbor
Acres and Beijing-You, the last one with a higher abdominal fat rate) and found remarkable differences in
their microbiota composition. When raising them in the same environment and with the same feed, the
microbiotas became similar. Zhou et al. (2016) contrasted the cecal microbiota of five Tibetan chickens
from five different geographic regions with Lohmann egg-laying hens and Daheng broiler chickens. Besides
seeing a difference between the breeds, slightly distinct microbiota between the regions could also be
noticed.

The intestinal microbiome can actively be changed by

= promoting the wanted microbes by feeding the appropriate nutrients (e.g., prebiotics)
= reducing the harmful ones by fighting them, for example, with organic acids or phytomolecules
= directly applying probiotics and adding, therefore, desired microbes to the microbiome.

An increase in the abundance of Lactobacillus and Succiniclasticum could be achieved in pigs by feeding
them a fermented diet, and Mitsuokella and Erysipelotrichaceae proliferated by adding a probiotic
containing B. subtilis and E. faecalis to the diet (Wang et al., 2022).

How to change the intestinal microbiome
to improve meat quality?

Before changing the microbiome, we must know which microbes are “responsible” for which
characteristics. However, the microbiotas do not act individually but as consortia. The following table
shows a selection of bacteria that, besides supporting the gut and its functions, influence meat quality in
some way.

Metabolites Producing bacteria Biological functions and effects on pigs
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Ruminococcaceae
Ruminococcus
Lachnospiraceae

Blautia
Short-chain fatty acids Roseburia - .
(acetate, butyrate, and Lactobacillaceae ReI?#largflle'pr%de?tetsgﬁt“sm
propionate) Clostridium P 9 y

Eubacterium
Faecalibacterium
Bifidobacterium
Bacteroides

Lactate Lactic acid bacteria Important metabolite for cross-feeding of
Bifidobacterium SCFA-producing microbiota
Clostridium species
Bile acids (primary and Eubacterium . .
secondary bile acids) Parabacteroides Regulate lipid metabolism

Lachnospiraceae

Amino acid fermenting
Ammonia commensals
Helicobacter

By-product of amino acid fermentation
Inhibits short-chain fatty acid oxidation

Serve as coenzymes in neurological
Bacteroides processes (B vitamins)
Lactobacillus * Essential vitamin for proper blood
clotting (vitamin K)

Table 1: Bacteria influencing meat quality (according to Vasquez et al., 2022)

B Vitamins and vitamin K

Fat for meat quality is intramuscular fat

If we talk about increasing fat to improve meat quality, we talk about increasing intramuscular fat or
marbling, not depot fat. The fat in meat-producing animals is mostly a combination of triglycerides from
the diet and fatty acids synthesized. Fat deposition and composition in non-ruminants reflect the fatty acid
composition of the diet but are also closely related to the design of the microbiome; short-chain fatty acids
in monogastric, e.g., are exclusively produced by the gut microbiome (Dinh et al., 2021; Vasquez et al.,
2022). Intramuscular fat is mainly made of triglycerides but also disposes of phospholipids associated with
proteins, such as lipoproteins or proteolipids, influencing meat flavor. The fermentation of indigestible
polysaccharides or amino acids results in short-chain or branched-chain fatty acids, respectively. Lactate,
produced by lactic acid bacteria, is utilized by SCFA-producing microbiota. An imbalance in the microbiome
fosters lipid deposition, as shown by Kallus and Brandt (2012), who found a higher proportion of Firmicutes
to Bacteroidetes (50% higher) in obese mice than in lean ones. In a trial described by Zhou et al. (2016),
tiny Tibetian chickens with a low percentage of abdominal fat were compared to two breeds (Lohmann
layers and Daheng broilers) being large and with a high percentage of abdominal fat. The Tibetan chickens
showed a two to four-fold higher abundance of Christensenellacea in the cecal microbiome.
Christensenellas belong to the bacterial strain of firmicutes. They are linked to slimness in human
nutrition, which was already proven by Goodrich et al. (2014) and is the contrary stated by Lei et al.

(2022).

Another example was provided by Wen et al. (2023). They compared two broiler enterotypes distinguished
by Clostridia vadinB60 and Rikenellaceae_RC9_gut and saw that the type with an abundance of
Clostridia_vadinBB60 showed higher intramuscular fat content but also more subcutaneous fat tissue. The
scientists also found another bacterium especially responsible for intramuscular fat: A lower plethora of
Clostridia vadimBE97 resulted in a higher intramuscular fat content in breast and thigh muscles but not
adipose tissues. Similar results were achieved in a trial with pigs and mice: Jinhua pigs showed a
significantly higher level of intramuscular fat than Landrace pigs. When transplanting the fecal microbiota
of the two breeds in mice, the mice showed similar characteristics in fat metabolism as their donors of
feces (Wu et al., 2021).

According to several studies (e.g., Chen et al., 2008; Liu et al., 2019), intramuscular fat in chicken has a
low heritability but may be controlled by feeding up to a certain extent. In pigs, Lo et al. (1992) and Ding
et al. (2019) found a moderate to low (0.16 - 0.23) heritability for intramuscular fat, but Cabling et al.
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(2015) calculated a heritability of 0.79 for the marbling score.

At least, especially the composition of fatty acids can easily be changed in monogastric (Aaslyng and
Meinert, 2017). Zou et al. (2017) examined the effect of Lactobacillus brevis and tea polyphenol, each
alone or combining both. Lactobacillus is probably involved in turning complex carbohydrates into
metabolites lactose and ethanol, but also acetic acid and SCFA. SCFAs are mainly produced by
Saccharolytic and anaerobic microbiota, aiding in the degradation of carbohydrates the host cannot digest
(e.g., cellulose or resistant polysaccharides into monomeric and dimeric sugars and fermenting them
subsequently into short-chain fatty acids). Including fibers and various oligosaccharides was shown to
increase the gut microbiome’s fermentation capacity for producing short-chain fatty acids.

In a trial conducted by Jiao et al. (2020), they showed that SCFAs applied in the ileum modulate lipid

metabolism and lead to higher meat quality in growing pigs. A plant polyphenol was used by Yu et al.
(2021). The added resveratrol, a plant polyphenol in grapes and grape products, to the diet of Peking
ducks and could significantly increase intramuscular fat.

Oxidation of lipids and proteins must be
prevented

The composition of the fatty acids and occurring oxidative stress in adipose and muscle tissue influences
or impacts meat quality in farm animals (Chen et al., 2022). During the last few years, the demand for
healthier animal products containing higher levels of polyunsaturated fatty acids has increased.
Consequently, the risk of lipoperoxidation has risen (Serra et al., 2021). Solutions are needed to counteract
this deterioration of meat quality. As can be seen in table 1, ammonia produced by amino acid-fermenting
commensals and Helicobacter inhibits the oxidation of SCFAs. Ma et al. (2022) changed the microbiome of
sows by feeding a probiotic from mating till day 21 of lactation and achieved a decreased level of MDA, a
sign of reduced oxidative stress. Similar results were achieved by He et al. (2022). In their trial, the
supplementation of 200 mg yeast 8-glucan/kg of feed significantly decreased the abundance of the phylum
WPS-2 as well as markedly increased catalase, superoxide dismutase (both p<0.05) and the total
antioxidant activity (p<0.01) in skeletal muscle. Another approach was done by Wu et al. (2020) in
broilers. They applied glucose oxidases (GOD) produced by Aspergillus niger and Penicillium
amagasakiense. Both enzymes did not disturb but improved beneficial bacteria and microbiota. The GOD
produced by A. niger reduced the content of malondialdehyde in the plasma.

Another alternative is antioxidant extracts from plants (Dzini¢, 2015). As consumers nowadays bet more
on natural products, they would be good candidates. They are considered safe and, therefore, well-
accepted by consumers and have beneficial effects on animal health, welfare, and production
performance.

Hazrati et al. (2020) showed in a trial that the essential oils of ajwain and dill decreased the concentration
of malondialdehyde (MDA) in quails’ breast meat and, therefore, lipid peroxidation and reduced cooking
loss. The antioxidant effects of thymol and carvacrol were shown by Luna et al. (2010). The group
receiving the essential oils showed lower TBARS in the thigh samples than the control group but similar
TBARS to the butylated hydroxytoluene-provided group.

Protein quality is a question of essential amino
acids

Protein with a high content of essential amino acids is one of the most critical components of meat. Alfaig
et al. (2014) tested probiotics and thyme essential oil in broilers. They found out that the content of EAAs
in breast and thigh muscles numerically increased gradually from the control over the probiotic and a
combination of a probiotic up to the thyme essential oil group. A significant (p<0.05) increase in all tested
amino acids (arginine, cysteine, phenylalanine, histidine, isoleucine, leucine, lysine, methionine, threonine,
and valine) could be observed in the samples of the breast and the thigh muscles when comparing the
thyme essential oil group with the control. Zou et al. (2017) provided similar results, showing a significant
increase in leucine and glutamic acid as well as a numerical increase in lysin, valine, methionine,
isoleucine, phenylalanine, threonine, asparagine, alanine, glycin, serin, and proline through the addition of
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a combination of Lactobacillus brevis and tea polyphenols. They also determined an increase in the
beneficial bacteria Lactobacillus and Bacteroides. The experimental results led them to the assumption
that both additives may also improve the taste of meat by increasing some of the essential and delicate
flavors produced by amino acids.

Tenderness is closely related to drip loss

The already mentioned trial conducted by Lei et al. (2022) with two different broiler breeds (Arbor Acres
and Beijing-You) having different microbiota showed a negative correlation between drip loss and the
abundance of Lachnochlostridium. They remodeled the Arbor Acres’ microbiome by applying a bacterial
suspension derived from the Beijing-You breed and decreased drip loss in their meat. He et al. (2022)
changed the microbiome by adding yeast 3-glucan to the diet of finisher pigs. They achieved a reduced
cooking loss (linear, p<0.05) and a lower drip loss (p<0.05), together indicating a better water-holding
capacity, as well as a decreased lactate content. The addition of a multi-species probiotic to the diet of
finishing pigs tended to result in lower cooking and drip loss(p<0.1) besides modulating the intestinal flora
(higher lactobacilli and lower E. coli counts in the feces) (Balasubramanian et al., 2017) and the inclusion
of Lactobacillus brevis and tea polyphenol individually or in a synergistic combination improved water
holding capacity and decreased drip loss Zou et al. (2017).

Puvaca et al. (2019) observed the lowest drip-loss values in breast meat and thigh with drumstick through
feeding chickens 0.5 g or 1.0 g of hot red pepper per 100 g of feed, respectively, in the grower and finisher
phase. The feeding of resveratrol reduced drip loss of Peking ducks’ leg muscles. SCFA infused into the
ileum enlarged the longissimus dorsi area and alleviated drip loss (Jiao et al, 2021).

The decrease and increase of the pH after
slaughtering determines meat quality

The pH in the muscles of a living animal is about 7.2. With slaughtering and bleeding, the energy supply of
the muscles is interrupted. The stored glycogen gets degraded to lactic acid, lowering the pH. Usually, the
lowest pH value of 5.4-5.7 in meat is reached after 18 to 24 hours. Afterward, it starts to rise again.

In stressed animals, the stress hormones adrenalin and noradrenalin provoke a rushly occurring and, due
to a lack of oxygen, anaerobic metabolism and the quick production of lactic acid. This too rapid decrease
in pH leads to the denaturation of proteins in the muscle cells and reduced water-holding capacity. The
result is PSE (pale, soft, and exudative) meat.

On the contrary, DFD meat (dark, firm, and dry) occurs if the glycogen reserves, due to challenges, are
already used up, and the lactic acid production is insufficient. Especially PSE meat is closely related to
breeds - some are more susceptible to stress, others less. However, some trials show that influencing pH
in meat is possible to a certain extent.

He et al., 2022 added yeast B-glucan to the diets of finishing pigs and a higher pH,; ., (linear and

quadratic, p<0.01) and a higher redness (a*; linear, p<0.05) of the meat. Wu et al. (2020) achieved a
significantly increased pH,,, through the addition of Glucose oxidase produced by Aspergillus niger.

Sensory characteristics are very subjective

In general, the sensory characteristics of meat are seen very individually. Some prefer lean, others fatty
meat, some like meat with a characteristic taste, and others with a neutral. However, the typical meat
taste of umami is partly determined by the nucleotide inosine monophosphate (IMP), which is regarded as
an essential index for evaluating meat flavor and the acceptability of meat products. IMP provides about
40-fold higher umami taste than sodium glutamate (Huang et al. 2022).IMP is the organophosphate of
inosin. Inosine, however, according to Kroemer and Zitvogel (2020), is produced by Bifidobacterium
pseudolongum, which possibly can be controlled by feeding. Sun et al. (2018) compared Caoke and
Partridge Shank chickens and divided them into free-range and cage groups. They found out that, except
for acids, the amounts of flavor components were higher in the free-range than in the cage groups. The
two housing systems also modified the microbiota, and Sun et al. took it as an indication that meat flavor,
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as well as the composition and diversity of gut microbiota, are closely associated with the housing
systems. Fu et al. (2023) examined the addition of a mixture containing Pulsatilla, Gentian, and Rhizoma
coptidis and a mixture with Codonopsis pilosula, Atractylodes, Poria cocos, and Licorice to the feed of
Hungarian white geese. They saw that in both groups, the total amino acid levels, especially Glu, Lys, and
Asp, increased, with, according to Liu et al. (2018), Glu and Asp directly affecting meat’s freshness and
flavor. Yu et al. (2021) achieved similar results by adding resveratrol to the diet of Peking ducks. The
addition of the herbs additionally led to a higher Firmicutes/Bacteroidetes ratio and an increased level of
lactobacilli (Fu et al., 2023).

How can EW Nutrition’s feed additives
help to improve meat quality?

Meat quality is influenced by the microbiome. So, feed additives that stabilize the microbiome or promote
certain beneficial bacterial strains are an opportunity.

Ventar D modulates the microbiome

Ventar D balances the microbiome by promoting beneficial bacteria such as lactobacilli and fighting
harmful ones such as Clostridia, E. coli, and Salmonella. (Heinzl, 2022). In another trial with broilers, the
addition of Ventar D to all feeds (100 g/t) showed an increase in short-chain fatty acids in the intestine:
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Figure 1: Short-chain fatty acids in the cecum of broilers

Santoquin countersteers oxidation

Another helpful product category is antioxidants. They can prevent the oxidation of lipids and proteins. For
this purpose, EW Nutrition offers Santoquin M6*, a product tested by Kuttapan et al. (2021). Santoquin M6
was tested concerning its ability to minimize the oxidative damage caused by feeding oxidized fat. A
control group receiving oxidized fat in feed was compared to one receiving oxidized fat plus 188 ppm
Santoquin M6 (£125 ppm ethoxyquin). The main parameters for this study were TBARS in the breast
muscle, the incidence of wooden breast, and the live weight on day 48.

Results indicated that the inclusion of Santoquin M6 reduced the production of TBARS in the breast
muscles, demonstrating a lower level of oxidative stress in the breast muscles.
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Figure 2: Thiobarbituric acid reactive substances (TBARS) in broiler breast muscles. TBARS are formed as a by-
product of lipid peroxidation.

Additionally, it reduced the incidence of severe woody breasts (Score 3) by almost half and helped
mitigate the impact of breast muscle degradation due to increased oxidative stress.
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Figure 3: Incidence of wooden breast in broilers

*Usage of ethoxyquin is dependent on country regulations.

Feed hygiene with Acidomix products minimizes
harmful pathogens

The Acidomix product line offers liquid, powdery, and micro-granulated products to be added to feed and
water. The organic acids in Acidomix directly act against pathogens in the feed and the water and help
keep the intestinal flora in balance.

A trial evaluating the effect of different Acidomix products against diverse pathogens showed lower MICs
for most Acidomix products than for single organic acids. The trial was conducted with decreasing

concentrations of the Acidomix products (2 - 0.015625 %) and 10° CFU of the respective microorganisms
(microtiter plates; 50 ul bacterial solution and 50 ul diluted product).
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Feeding is the one side, slaughtering the
other one

With feeding, the microbiota and some meat characteristics can be changed; however, the last step,
handling the animals before and the meat after slaughtering also significantly contributes to a good quality
of meat. Stress due to the transport and the slaughterhouse atmosphere, combined with stress-sensible
breeds, can lead to PSE meat. Incorrect handling at the slaughterhouse can lead to meat contaminated
with pathogens.

Combining feeding measures with professional and calm handling of the animals is the best strategy to
achieve high-quality meat.
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The Zinc Oxide ban: What led to it,
what are the alternatives?
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In June 2017, the European Commission decided to ban the use of veterinary drugs containing
high doses of zinc oxide (3000mg/kg) from 2022. The use of zinc oxide in pig production must
then be limited to a maximum level of 150ppm. Companies have been on the lookout for
effective alternative strategies to maintain high profitability.

Modern pig production is characterised by its high intensity. In many European countries, piglets are
weaned after 3-4 weeks, before their physiological systems are fully developed (e.g. immune and enzyme
system). Weaning and thus separation from the mother, as well as a new environment with new germs,
means stress for the piglets. Besides, the highly digestible sow’s milk, for which the piglets are wholly
adapted, is replaced by solid starter feed.

This, associated with the above-mentioned stressors, can result in reduced feed intake during the first
week after weaning and therefore in a delayed adaptation of the intestinal flora to the feed. Since the
immune system of animals is not yet fully functional, pathogens such as enterotoxic E. coli can colonize
the intestinal mucosa. This can possibly develop into a dangerous dysbiosis, leading to an increased
incidence of diarrhea. Inadequate absorption results in suboptimal growth with worse feed conversion. The
consequences are economic losses due to higher treatment costs, lower yields, and animal losses.

Diarrhea is one of the most common causes of economic losses in pig production. In the past, this was the
reason antibiotics were prophylactically used as growth promoters. Antibiotics reduce antimicrobial
pressure and have an anti-inflammatory effect. In addition to reducing the incidence of disease, they
eliminate competitors for nutrients in the gut and thus improve feed conversion.

However, the use of antibiotics as growth promoters has been banned in the EU since 2006 due to
increased antimicrobial resistance. As a result, zinc oxide (ZnO) appeared on the scene. A study carried
out in Spain in 2012 (Moreno, 2012) showed that 57% of piglets received ZnO before weaning and 73%
during the growth phase (27-75 days).



Zinc oxide: the disadvantages
outweigh the advantages

What made the use of zinc oxide so attractive? Zinc oxide is inexpensive, available in many EU countries,
and as a trace element it can be used in high doses through premixing. In some countries, however, a
veterinary prescription is needed; in others, the use is already banned.

Zinc is a trace element involved in cell division and differentiation, and it influences the efficacy of
enzymes. Since defence cells also need zinc, a supplementation that covers the demand for zinc
strengthens the body’s defences. Through a positive effect on the structure of the gut mucosa membrane,
zinc protects the body against the penetration of pathogenic germs.

If ZnO is used in pharmacological doses, it has a bactericidal effect against e.g. staphylococci (Ann et al.,
2014) and various types of E. coli (Vahjen et al., 2016). Thus, prophylactic use prevents the incidence of
diarrhea and the consequent decrease in performance. But the use of zinc oxide also has “side effects”.

Accumulation in the environment

Zinc belongs to the chemical group of heavy metals. For the use as a performance enhancer, it has to be
administered in relatively high doses (2000-4000ppm). These high amounts are far above the
physiological needs of the animals. With relatively low absorption rates (the bioavailability amounts to
approximately 20% (European Commission, 2003)) and subsequent accumulation in manure, zinc can
cause substantial contamination of the environment.

Encouraging the development of antibiotic
resistance

In addition to the accumulation of zinc in the environment, another aspect also plays an important role:
according to Vahjen et al. (2015), a dose of =2500mg/kg of food increases the presence of tetracycline
and sulfonamide resistance genes in bacteria. In the case of Staphylococcus aureus, the development of
resistance to zinc is combined with the development of resistance to methicillin (MRSA; Cavaco et al.,
2011; Slifierz et al., 2015). A similar effect can be observed in the development of multiresistant E. coli
(Bednorz et al., 2013; Ciesinski et al., 2018). The reason for this is that the genes that encode antibiotic
resistance, i.e. the ones that are “responsible” for the resistance, are found in the same plasmid (a DNA
molecule that is small and independent of the bacterial chromosome).

Consequence: no more zinc oxide in the
production of piglets from 2022 onwards

The negative effects on the environment and the promotion of antibiotic resistance led to the European
Commission’s decision in 2017 to completely ban zinc oxide as a therapeutic agent and as a growth
promoter in piglets within five years.

There are effective alternatives to zinc



oxide

By the 2022 deadline, the EU pig industry must find a solution to replace ZnO. It must develop strategies
that make future pig production efficient, even without substances such as antibiotics and zinc oxide. To
this end, measures should be taken at different levels, such as farm management and biosecurity (e.g.
effective hygiene management). The promotion of intestinal health for high animal performance is most
important, however.

Promotion of gut health through stable gut
microbiota

The term eubiosis denotes the balance of microorganisms living in a healthy intestine, which must be
maintained to prevent diarrhea and ensure performance. However, weaning, food switching, and other
external stressors can endanger this balance. As a result, potentially pathogenic germs can “overgrow”
the commensal microbiome and develop dysbiosis. Through the use of functional supplements, intestinal
health can be improved.

Phytomolecules - potent compounds created by
nature

Phytomolecules, or secondary plant compounds, are substances formed by plants with a wide variety of
properties. The best-known groups are probably essential oils, but there are also bitter substances, spicy
substances, and other groups.

In animal nutrition, phytomolecules such as carvacrol, cinnamon aldehyde, and capsaicin can help improve
intestinal health and digestion. They stabilize the intestinal flora by slowing or stopping the growth of
pathogens that can cause disease. How? Phytomolecules, for example, make the cell walls of several
bacteria permeable so that cell contents can leak. They also partially interfere with the enzymatic
metabolism of the cell or intervene with the transport of ions, reducing the proton motive force. These
effects depend on the dose: all these actions can destroy bacteria or at least prevent their proliferation.
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Another point of attack for phytomolecules is the communication between microorganisms (quorum
sensing). Phytomolecules can prevent microorganisms from releasing substances known as autoinducers,
which they need to coordinate joint actions such as the formation of biofilms or the expression of virulence
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factors.

Medium-chain triglycerides and fatty acids

Medium-chain triglycerides (MCT) and fatty acids (MCFA) are characterised by a length of six to twelve
carbon atoms. Thanks to their efficient absorption and metabolism, they can be optimally used as an
energy source in piglet feeding. MCTs can be completely absorbed by the epithelial cells of the intestinal
mucosa and hydrolysed with microsomal lipases. Hence they serve as an immediately available energy
source and can improve the epithelial structure of the intestinal mucosa (Hanczakowska, 2017).

In addition, these supplements have a positive influence on the composition of the intestinal flora. Their
ability to penetrate bacteria through semi-permeable membranes and destroy bacterial structures inhibits
the development of pathogens such as salmonella and coliforms (Boyen et al., 2008; Hanczakowska, 2017;
Zentek et al., 2011). MCFAs and MCTs can also be used very effectively against gram-positive bacteria
such as streptococci, staphylococci, and clostridia (Shilling et al., 2013; Zentek et al., 2011).

Prebiotics

Prebiotics are short-chain carbohydrates that are indigestible for the host animal. However, certain
beneficial microorganisms such as lactobacilli and bifidobacteria can use these substances as substrates.
By selectively stimulating the growth of these bacteria, eubiosis is promoted (Ehrlinger, 2007). In pigs,
mannan-oligosaccharides (MOS), fructooligosaccharides (FOS), inulin and lignocellulose are mainly used.

Another element of prebiotics’ positive effect on intestinal health is their ability to agglutinate pathogens.
Pathogenic bacteria and MOS can bind to each other through lectin. This agglutination prevents
pathogenic bacteria from adhering to the wall of the intestinal mucosa and thus from colonizing the
intestine (Oyofo et al., 1989).

Probiotics

Probiotics can be used to regenerate an unbalanced gut flora. To do this, useful bacteria such as bifido or
lactic acid bacteria are added to the food. They must settle in the gut and compete with the harmful
bacteria.

There are also probiotics which target the communication between pathogens. In an experiment, Kim et al.
(2017) found that the addition of probiotics that interfere with quorum sensing can significantly improve
the microflora in weaned piglets and thus their intestinal health.

Organic acids

Organic acids show strong antibacterial activity in animals. In their undissociated form, the acids can
penetrate bacteria. Inside, the acid molecule breaks down into a proton (H+) and an anion (HCOO-). The
proton reduces the pH value in the bacterial cell and the anion interferes with the bacteria’s protein
metabolism. As a result, bacterial growth and virulence are inhibited.

Conclusion

Today there are several possibilities in piglet nutrition to effectively support the young animals after
weaning. The main objective is to maintain a balanced intestinal flora and therefore to sustain intestinal
health - its deterioration often leads to diarrhea and hence to reduced returns. Intestinal health is
promoted by stimulating beneficial bacteria and by inhibiting pathogenic ones. This can be achieved
through feed additives that have an antibacterial effect and/or support the intestinal mucosa, such as
phytomolecules, prebiotics, and medium-chain fatty acids. Through a combination of these possibilities,
additive effects can be achieved. Piglets receive optimal support and the use of zinc oxide can be reduced.
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As pig production specialists, we understand that our animals are under constant challenge
during their life. Challenges can be severe or moderate, correlated to several factors - such as,
for instance, stage of production, environment, and so on - but they will always be present. To
be successful, we need to understand how to counter these challenges and support the
healthy development of our pigs.

Factors for successful pig
production

For years we have been increasing our understanding of how to formulate diets to support a healthy
intestine through the optimal use of the supplied nutrients. Functional proteins, immune-related amino
acids, and fiber are now applied worldwide for improved pig nutrition.

What lies beyond formulation
adjustments?

However, pig producers have also realized that these nutritional strategies alone are not always fully
efficient in preventing an “irritation” of the immune system and/or in preventing diseases from happening.

Immune nutrition is gaining a strong foothold in pig production, and the body of research and evidence
grows richer every year. At the same time, we see genetics continually evolving and bringing production
potential to increasingly higher levels. We are also constantly increasing our understanding of the
importance of farm and feed management, as well as biosecurity in this process.

Finally, the importance of a stable microflora is now uncontested. Especially around weaning, a stable
microflora is necessary to prevent the proliferation of pathogens such as E.coli bacteria. Such pathogens
can degrade the lysine (the main amino acid for muscle protein production) we have added to our
formulations, rendering it useless.

Single molecules (or additives) are able to support the development of gut microflora, boost its integrity,
and therefore help the animals use “traditional nutrients” in a more effective way.



The impact of immune system
activation on the performance of

pigs

Animal performance is influenced by complex processes, from metabolism to farm biosecurity.
Environmental conditions, diet formulation and feed management, and health status, among others,
directly affect the amount of the genetic potential that animals can effectively express.

Among these so-called non-genetic variables, health status is one of the most decisive factors for the
optimal performance from a given genotype. Due to the occurrence of (sub-) clinical diseases, the
inflammatory process can be triggered and may result in a decrease in weight gain and feed efficiency.

Not so long ago, pig producers believed that a maximized immune response would always be ideal for
achieving the best production levels. However, after decades spent researching what this “maximized
immune response” could mean to our pigs, studies from different parts of the globe proved that an
activated immune system could negatively affect animal performance. The perception is nowadays
common sense within the global pig production industry.

That understanding led us to increasingly search for production systems that will yield the best conditions
for the pigs. This means minimum contact with pathogens, reduced stress factors, and therefore a lower
need for an activated immune system.

How immune system stimulation works

The immune system has as main objective to identify the presence of antigens - substances that are not
known to the body - and protect the body from these “intruders”. The main players among these
substances are bacteria and viruses. However, some proteins can also trigger an immunological reaction.
Specific immune cells are responsible for the transfer of information to the other systems of the body so
that it can respond adequately. This response from the immune system includes metabolic changes that
can affect the demand for nutrients and, therefore, the animals’ growth.

The stimulation of the immune system has three main metabolic consequences:

= behavioral responses
= direct connection with the endocrine system and regulation of the secretions
» release of leukocytes, cytokines, and macrophages

In general, the immune system responds to antigens, releasing cytokines that activate the cellular
(phagocytes) and humoral components (antibody), resulting in a decreased feed intake and an increased
body temperature/heat production.

When feed formulation is concerned, possibly even more important is to understand that the activation of
the immune system leads to a change in the distribution of nutrients. The basal metabolic rate and the use
of carbohydrates will have completely different patterns in such an event. For instance, some glucose
supplied through the feed follows its course to peripheral tissues; however, part of the glucose is used to
support the activated immune system. As a consequence, the energy requirement of the animal increases.

Protein synthesis and amino acid utilization also change during this process. There is a reduction of body
protein synthesis and an increased rate of degradation. The nitrogen requirement increases because of the
higher synthesis of acute-phase proteins and other immunological cells.

However, increased lysine levels in the diets will not always help the piglets compensate for this shift in
the protein metabolism. According to Shurson & Johnston (1998), when the immune system is activated,
there is further deamination of amino acids and increased urinary excretion of nitrogen. Therefore we need



to understand better which amino acids must be supplied in a challenging situation.

In pigs, the gastrointestinal tract is, to a large extent, responsible for performance. This happens because
the gut is the route for absorption of nutrients, but also a reservoir of hundreds of thousands of different
microorganisms - including the pathogenic ones.

Understanding Gut Health

Gut health and its meaning have been the topic of several peer-reviewed articles in the last few decades
(Adewole et al., 2016, Bischoff, 2011, Celi et al., 2017, Jayaraman and Nyachoti, 2017, Kogut and
Arsenault, 2016, Moeser et al., 2017, Pluske, 2013). Despite the valuable body of knowledge accumulated
on the topic, a clear and widely-accepted definition is still lacking. Kogut and Arsenault (2016) define it in
the title of their paper as “the new paradigm in food animal production”. The authors explain it as the
“absence / prevention / avoidance of disease so that the animal is able to perform its physiological
functions in order to withstand exogenous and endogenous stressors”.

In a recently published paper, Pluske et al. (2018) add to the above definition that gut health should be
considered in a more general context. They describe it “a generalized condition of homeostasis in the GIT,
with respect to its overall structure and function”. The authors add to this definition that gut health in pigs
can be compromised even when no clinical symptoms of disease can be observed. Every stressful factor
can undermine the immune response of pigs and, therefore, the animals’ performance.

All good information on this topic leads us to the conclusion that, without gut balance, livestock cannot
perform as expected. Therefore, balance is the objective for which we formulate our pigs’ feed.

Current nutritional strategies for a stable
gut microbiota

Feeding: quality of raw materials

The photos included here were taken in the field and show that taking action against this reality is a must
for keeping animals healthy.

Much of this action is related to farm management. The most effective way to minimize such situations is
to implement a strict control system in the feed production sites, including controlling raw material quality.

Additives can be used to improve the safety of raw materials. As already extensively discussed, everything
that goes into the intestine of the animals will affect gut health and performance. Therefore, the potential
harmful load of mycotoxins should be taken into account. Besides careful handling at harvest and the
proper storage of grains, mycotoxin binders can be applied to further decrease the risk of mycotoxin
contamination.
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Figure 2. Feed mixer in a home mixer pig farm




The effect of nutrition on microflora: commercial weaning
diet after focusing on gut health

The gut-health-focused formulation of diets must take into account the following essentials:

» decrease of gut pH

= gut wall integrity

» minimization of (pathogenic) microbial growth

= microflora modulation with consequently improved colonization resistance

Gut pH

A lower pH in the stomach slows the passage rate of the feed from the stomach to the small intestine. A
longer stay of the feed in the stomach potentially increases the digestion of starch and protein. The
secretion of pancreatic juices stimulated by the acidic stomach content will also improve the digestion of
feed in the small intestine.

For weaned pigs, it is essential that as little as possible of the substrate will reach the large intestine and
be fermented. Pathogens take advantage of undigested feed to proliferate. Lowering these “nutrients” will
decrease the risk of bacterial overgrowth.

The same is true where protein sources and their levels are concerned. It is essential to reduce protein
content as much as possible and preferably use synthetic (essential) amino acids. The application of such
sources of amino acids has been proven long ago, and yet in some cases, it is still not fully utilized. Finally,
using highly digestible protein sources should, at this point, be a matter of mere routine.

All these strategies have the same goal: the reduction of undigested substances in the gut. Additionally,
the reduction of the protein levels can also decrease the costs of the diets.

Further diet adjustments

Further diet adjustments, such as increasing the sulfur amino acids (SAA) tryptophan and threonine to
lysine ratio, must also be considered (Goodband et al., 2014; Sterndale et al., 2017). Although the concept
of better balancing tryptophan and threonine are quite clear among nutritionists, SAA are sometimes
overestimated. Sulfur amino acids are the major amino acids in proteins related to body maintenance, but
not so high in muscle proteins. Therefore, the requirement of SAA must also be approached differently.
Unlike lysine, the requirements of SAA tend to be higher in immunologically stimulated animals (Table 1).

Pig weight (kg) ISA* SID (';z)-"i“e SAA (%) SAA:Lys
. High 1,34 0,64 0,48
Low 1,07 0,59 0,55
e High 1,22 0,62 0,51
Low 0,99 0,57 0,58

Table 1. Effect of the immune system activation on the demand for lysine and sulfur amino
acids in pigs (Stahly et al., 1998)

*ISA - immune system activation

Vitamins and minerals are classic nutrients to be considered when formulating gut health-related diets.
Maybe not so extensive as the amino acids and protein levels, these nutrients have, however, been found
to carry benefits in challenging situations. In the past several years, a lot was published on the
requirements of pigs facing an activation of the immune system. Stahly et al. (1996) concluded that when
the immune system is activated, the phosphorous requirements change.
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Parameters ISA*

High Low

Feed intake (g/d) 674 833
Weight gain (g/d) 426 566
Available P (%) 0,45 0,65

Table 2. Effect of the immune system activation on the performance and phosphorous
requirements of pigs (Stahly et al., 1998)

*ISA - immune system activation

Another example is vitamin A. It is involved in the function of macrophages and neutrophils. Vitamin A
deficiency decreases the migratory and phagocytic abilities of the immune cells. A lower antibody
production is observed in vitamin A deficiency as well. Furthermore, vitamin A is an important factor in
mucosal immunity, because this vitamin plays a role in lymphocyte homing in the mucosa (Duriancik et al.,
2010).

Phytomolecules: key additives to support
gut health

Phytomolecules are currently considered one of the top alternatives to in-feed antibiotics for pigs
worldwide. Programs sponsored by the European Union are once more evaluating the effectiveness of
these compounds as part of a strategy to produce sustainable pigs with low or no antibiotic use. The EIP-
Agri (European Innovation Partnership “Agricultural Productivity and Sustainability”) released a document
with suggestions to lower the use of antibiotics in feed by acting in three areas:

= improving pig health and welfare
= changing attitudes and human habits
= finding specific alternatives to antibiotics

Under the last topic, the commission recommends plant-based feed additives to be further examined.

Antibiotics have been used for many years for supporting performance in animal production, especially in
critical moments. The mode of action consists of the reduction of pathogen proliferation and inflammation
processes in the digestive tract. These (soon-to-be-) banned compounds therefore reduce the activation of
the immune system, helping keep pigs healthy through a healthy gastrointestinal tract. As potential
alternatives to antibiotic usage, phytomolecules should be able to do the same.

The mode of action of phytomolecules
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Antimicrobial

Most phytomolecules used nowadays aim to control the number and type of bacteria in the gut of animals.
According to Burt (2004), the antimicrobial activity of phytomolecules is not the result of one specific mode
of action, but a combination of effects on different targets of the cell. This includes disruption of the
membrane by terpenoids and phenolics, metal chelation by phenols and flavonoids, and protective effects
against viral infections for certain alkaloids and coumarins (Cowan, 1999).

Digestion support

The antimicrobial efficacy is one of the most important activities of secondary plant compounds, but it also
impacts digestion. Windisch et al. (2008) states that growth-promoting agents decrease immune defense
stress during critical situations. They increase the intestinal availability of essential nutrients for
absorption, thus promoting the growth of the animal.

Indeed, phytomolecules are a good tool for stabilizing the gut microbiota. But more can be expected when
adding this class of additives into your formulation and/or farm operations. Mavromichalis, in his book
“Piglet Nutrition Notes - Volume 2", brings attention to the advantages of using phytomolecules such as
capsaicin, which is often related to increased feed intake. Recent research has demonstrated that
capsaicin increases the secretion of digestive enzymes that may result in enhanced nutrient digestibility.
According to Mavromichalis, this can lead to a better feed conversion rate as more nutrients are available
to the animal. Indirectly, this also helps control the general bacterial load in the gut.

Antioxidant support

This results from the polyphenols’ capacity to act as metal-chelators, free radical scavengers, hydrogen
donators, and inhibitors of the enzymatic systems responsible for initiating oxidation reaction.
Furthermore, they can act as a substrate for free radicals such as superoxide or hydroxyl, or intervene in
propagation reactions.

This variety of benefits explains at least partially the high level of interest in this group of additives for pigs
under challenging conditions. For the production of effective blends, it is crucial to understand the different
modes of action of the phytomolecules and the probable existing synergies. Furthermore, the production
technology must be considered. For instance, microencapsulation techniques that prevent losses during
feed processing are an important consideration.

Not to be discarded: Biosecurity

The recent outbreak of African Swine Fever focused our attention on something that is sometimes
neglected on the farm: biosecurity rules. According to the report “Good Practices For Biosecurity In The Pig
Sector” (2010), the three main elements of biosecurity are:

= segregation
= cleaning
= disinfection

In general terms, the following steps must be adopted with the clear goal of reducing the challenges that
the pigs are facing.

= Farms must be located far from other farms (regardless of the species) and ideally must be
protected with natural (forest/woods) or physical barriers.

= Only one entrance must be used to go into the farm (for both vehicles and people) and a
disinfection procedure must be in place, either by an automatized system or by manual
application of disinfectants. Equipment disinfection systems must also be in place.

= Workers and any other person that enters the facility should adhere to strict biosecurity
measures 24/7. The farms must have a visitors’ book including relevant data on previous visits
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to farms (regardless of the species).

Trucks and visitors should not have been in contact with other pigs recently (at least 48 hours
previous to the visit).

Only farm workers are allowed to go into the barns unless special approval is given (followed by
strict biosecurity measurements prior to the visit).

The use of clothing and footwear that are worn only in the pig unit (and certainly not during
visits to other pig farms) is recommended.

No materials (e.g. tools) can be moved from one barn to another barn. People that enter a barn
should change footwear and wash their hands with soap for at least 10 seconds.

These simple actions can make a big difference to the performance of the pigs, and as a consequence to
the profitability of a swine farm.

Take-home messages

Different formulations and reassessed nutritional level recommendations have been on the radar for a
couple of years. It is high time to consider using efficient additives to support the pigs’ gut health.
Phytomolecules appear as one of the most prominent tools to reduce pathogenic stress in pig production.
Either via feed or water, phytomolecules are proven to reduce bacterial contamination and therefore
reduce the need for antibiotic interventions. Furthermore, a more careful look at our daily activities in the

farm is crucial. Paying attention to biosecurity and to feed safety should be standard tools to improve
performance and the success of pig production operations.

References are available upon request.

*The article was initially published in the PROCEEDINGS OF THE PFQC 2019
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by Merideth Parke, Regional Technical Manager, EW Nutrition

To contain and reverse antimicrobial resistance, consumers and government regulators expect
changes in pork production with the clear goal to reduce antibiotic use. For healthy, profitable
pig production with simultaneous antibiotic reduction, a holistic strategy is required:
refocusing human attitudes and habits, optimal pig health and welfare, and applying potential
antibiotic alternatives.

Corn is often contaminated with Aspergillus fungi that can produce poisonous mycotoxins

Pig producers need to manage
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pathogenic pressure while
reducing antibiotics

Intensive pig production has stress points associated with essential husbandry procedures such as
weaning, health interventions, and dietary modifications. Stress is widely accepted to have a negative
impact on immune system effectiveness, enhancing opportunities for pathogenic bacteria to invade at a
local or systemic level. The gastrointestinal and respiratory systems are highly susceptible to developing
disease as a result of these combined factors. Interventions such as antibiotics are commonly
implemented to reduce the impact of pathogens and manage pig health. Processes that minimize the
number of pathogens in the environment are the foundation for a successful antibiotic reduction plan. The
challenge is to smartly combine strategies to keep the gastrointestinal and respiratory tract intact and
robust.

Phytomolecules, the specific active defense compounds found in plants, have been identified as capable of
enhancing pig health through antimicrobial (Cimanga et al., 2002, Franz et al., 2010), antioxidative
(Katalinic et al., 2006, Damjanovic-Vratnica et al., 2007, Lee et al., 2011), digestion-stimulating and
immune-supportive functions. As many thousands of phytomolecules exist, laboratory research has
focused on identifying those with the capability of microbial management, facilitating the end goal of
reducing the reliance on antibiotics for pig health and welfare and the production of safe pork (Zhai et al.
2018).

Which roles can phytomolecules play in
reducing antibiotics?

The gastrointestinal tract benefits from applying phytomolecules such as capsaicin, carvacrol, and
cinnamaldehyde, as they:

support a balanced and stable biome,

prevent dysbiosis, maintain tight junction integrity (Liu et al., 2018),
increase secretion of digestive enzymes, and

enhance gut contractility (Zhai et al., 2018).

Pigs most susceptible and in need of phytomolecule gastrointestinal supportive actions are piglets at
weaning and pigs of all ages undergoing stress, pathogen challenges, and/or dietary changes.

Porcine respiratory disease is a complex multifactorial disorder. It frequently requires antibiotics to
manage infection pressure and clinical disease to maintain pig health, welfare, and production
performance. Causal pathogens may be transmitted by direct contact between pigs in saliva (Murase et

al., 2018) or bioaerosols (LeBel et al., 2019), via the nasal or oral cavities (inhalation directly into the
airways and lungs), or via an unhealthy gut. Phytomolecules such as carvacrol and cinnamaldehyde have
antimicrobial properties. Hence, they may help contain respiratory pathogens in their natural habitat (the
upper respiratory tract) or during transit through the oronasal cavity and gastrointestinal tract (Swildens et
al., 2004, Lee et al., 2001).

In addition to supporting the gastrointestinal and respiratory systems, phytomolecules such as menthol
and 1,8-cineole have been shown to enhance the physical and adaptive immune systems in multiple
species (Brown et al., 2017, Barbour et al., 2013). When applied via drinking water, adherence to the
oronasal mucosa facilitates the inhalation of the active phytomolecule compounds into the respiratory
tract. There, they act as mucolytics, muscle relaxants, and enhancers of the mucociliary clearance
mechanism (Baser and Buchbauer, 2020). Phytomolecules have also been documented to positively
influence the adaptive immune system, promoting both humoral and cell-mediated immune responses
(Awaad et al., 2010, Gopi et al., 2014, Serafino et al., 2008).
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How phytomolecules feature in the
holistic approach to antibiotic reduction

Antibiotic reduction programs positively enact social responsibility by reducing the risk to farmworkers of
exposure to antimicrobial-resistant bacteria. They also help maintain or increase efficiency in safe pork
production - pork with minimal risk of antibiotic residues.

Implementation of a successful health program with reduced antibiotic use will require:

application of strict internal and external biosecurity processes;

evaluation and monitoring of AMR bacteria;

partnerships with specialist nutritionists to target a lifetime healthy gut biome; and
phytomolecule-assisted health management (Figure 1).

Phytomolecules
Biosecurity AMR evaluation Nutritional for gut and
consultancy /~ and monitoring advice /  respiratory
\ i . health support

Figure 1: The role of phytomolecules within EW Nutrition’s holistic Antibiotic Reduction program

A combination of in vitro and in vivo studies provides evidence that specific phytomolecules can support
both enteric and respiratory systems through biome stabilisation and pathogen management (Bajabai et
al., 2020). Antimicrobial activity of thymol, carvacrol, and cinnamaldehyde has been reported against
respiratory pathogens including S. suis, A. pleuropneumoniae, and H. parasuis (LeBel et al., 2019); multi-
drug resistant and ESBL bacteria (Bozin et al., 2006); enteric pathogens including E. coli, Salmonella
enteritidis, Salmonella cholerasuis, and Salmonella typhimurium (Penalver et al., 2005); Clostridium spp.,
E. coli spp., Brachyspira hyodysenteriae (Vande Maelle et al., 2015); and Lawsonia intracellularis
(Draskovic et al., 2018). These results have shown phytomolecules to be effective antimicrobial
alternatives for incorporation into holistic pig health programs.

Additionally, the inclusion of phytomolecules into pig production systems also enhances production
performance by reducing the negative impact of stress on the pig and increasing the positive effects on
gut health and nutrient utilization (Franz et al., 2010). Phytomolecules that directly impact digestive
actions include capsaicin, which optimizes the production of digestive enzymes and increases serotonin for
gut contraction maintenance and improved digesta mixing (Zhai et al., 2018). Cineol’s antioxidative
activities provide support during times of stress (Cimanga et al., 2002).

Phytomolecules are key to reducing antibiotics in
pig production

The pig industry searches for alternatives to therapeutic, prophylactic, and growth-promoting antibiotic

applications to keep available antibiotics effective for longer - and to address the social responsibility of
mitigating AMR. This search for ways to produce safe pork has made it clear that only a combination of

management and antibiotic alternatives can achieve these aligned goals.

Biosecurity, hygiene, stress reduction, and husbandry and nutritional advances form the foundation for the
strategic application of specific phytomolecules (Zeng et al. 2016). Supporting pig production and health,
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this complete holistic solution (EIP-AGRI) moves the pig industry into a future where antibiotic reduction or
removal, with equivalent or increased production of safe pork, becomes a reality.
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